《代數(shù)雜志》是一份領先的國際期刊,發(fā)表的論文顯示了在代數(shù)和相關(guān)計算方面的高質(zhì)量研究成果。只有最好和最有趣的論文才會被考慮發(fā)表在雜志上。考慮到這一點,重要的是,這一貢獻應產(chǎn)生實質(zhì)性的結(jié)果,對實地產(chǎn)生持久的影響。該雜志還在尋找能夠提供創(chuàng)新技術(shù)的工作,為未來的研究提供有希望的結(jié)果。計算代數(shù)部分計算代數(shù)部分已被引入,以提供一個適當?shù)恼搲├糜嬎銠C計算作出貢獻,并擴大該期刊的范圍。在《代數(shù)雜志》的計算代數(shù)部分,下列論文特別受歡迎:?通過計算機計算得到的結(jié)果——要適合發(fā)表這些結(jié)果,必須代表數(shù)學的一大進步。用更高的計算機能力來擴展以前的計算是不夠的。相反,貢獻必須展示新的方法和數(shù)學結(jié)果才能被接受。?特定代數(shù)結(jié)構(gòu)的分類(如果合適,以表的形式),這些結(jié)構(gòu)不容易獲得,并且對代數(shù)社區(qū)有用。?對實驗的描述和結(jié)果,提出新的猜想,支持現(xiàn)有猜想,或者對現(xiàn)有猜想給出反例。?論文強調(diào)代數(shù)建設性的一面,如描述和分析的新算法(不是程序清單,也不是,在第一個實例,討論軟件開發(fā)的問題),改進和擴展現(xiàn)有的算法,計算方法的描述并不是嚴格意義上的算法(例如,他們不需要終止)。?代數(shù)與計算機科學之間的交互,如自動結(jié)構(gòu)、字詞問題以及組和半組中的其他決策問題,最好,但不一定,強調(diào)相關(guān)算法的實用性、實現(xiàn)和性能。?歡迎來自代數(shù)的所有領域的貢獻,包括代數(shù)幾何或代數(shù)數(shù)論,如果重點是代數(shù)方面。描述代數(shù)結(jié)果或方法的應用的貢獻,例如在編碼理論,密碼學,或微分方程的代數(shù)理論是非常受歡迎的。在計算代數(shù)部分發(fā)表論文的一個重要的通用標準是它對建設性方面的強調(diào)。這本雜志有一個開放的檔案。所有已發(fā)表的項目,包括研究論文,都可以無限制地訪問,并在發(fā)表48個月后永久免費閱讀和下載。存檔中的所有論文均受愛思唯爾用戶許可的約束。
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.The Computational Algebra SectionThe Computational Algebra section has been introduced to provide an appropriate forum for contributions which make use of computer calculations and to broaden the scope of the Journal.The following papers are particularly welcome in the Computational Algebra section of the Journal of Algebra:? Results obtained by computer calculations - to be suitable for publication such results must represent a major advance of mathematics. It is not sufficient to extend previous computations by means of higher computer power. Rather the contribution has to exhibit new methods and mathematical results to be accepted.? Classifications of specific algebraic structures (in form of tables, if appropriate), which are not easily obtained and are useful to the algebraic community.? Description and outcome of experiments, to put forward new conjectures, to support existing conjectures, or to give counter examples to existing conjectures.? Papers emphasizing the constructive aspect of algebra, such as description and analysis of new algorithms (not program listings, nor, in the first instance, discussions of software development issues), improvements and extensions of existing algorithms, description of computational methods which are not algorithms in the strict sense (since, e.g., they need not terminate).? Interactions between algebra and computer science, such as automatic structures, word problems and other decision problems in groups and semigroups, preferably, but not necessarily, with an emphasis on practicality, implementations, and performance of the related algorithms.? Contributions are welcome from all areas of algebra, including algebraic geometry or algebraic number theory, if the emphasis is on the algebraic aspects.Contributions describing applications of algebraic results or methods, for example in coding theory, cryptography, or the algebraic theory of differential equations are highly welcome. An important general criterion for the publication of a paper in the Computational Algebra section is its emphasis on the constructive aspects.This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license.
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >