目標(biāo)和范圍MPAG是一種同行評(píng)審的期刊,發(fā)表研究論文,展示與物理有很強(qiáng)互動(dòng)的數(shù)學(xué)主題的原始結(jié)果,特別強(qiáng)調(diào)分析、概率和幾何。紙張的長度本身并不是問題,只要內(nèi)容證明其長度是合理的。編輯委員會(huì)致力于結(jié)合準(zhǔn)確和快速的裁判過程的要求。本期刊涵蓋的主題包括:-經(jīng)典、量子和隨機(jī)可積系統(tǒng);-經(jīng)典力學(xué)和動(dòng)力系統(tǒng);-統(tǒng)計(jì)物理和量子場(chǎng)論的組合方面;-經(jīng)典和量子場(chǎng)論;-非交換幾何和物理應(yīng)用;-隨機(jī)過程和隨機(jī)圖;-經(jīng)典和量子統(tǒng)計(jì)力學(xué);-隨機(jī)矩陣?yán)碚?-變形和幾何量化;-李代數(shù)和Hopf代數(shù);-代數(shù)幾何;——量子信息。
Aims & Scope MPAG is a peer-reviewed journal that publishes research papers presenting original results on Mathematical topics having strong interactions with Physics, with a specific emphasis on Analysis, Probability and Geometry. Paper length is not “per se” an issue as long as the contents justify that length. The editorial board commits itself to combine the requirements of an accurate and fast refereeing process. A list of topics that are covered in this Journal includes: - classical, quantum and stochastic integrable systems;- classical mechanics and dynamical systems;- combinatorial aspects of statistical physics and quantum field theory;- classical and quantum field theories;- non-commutative geometry and applications to physics;- stochastic processes and random graphs;- classical and quantum statistical mechanics;- random matrix theory;- deformation and geometric quantization;- Lie-algebras and Hopf algebra;- algebraic geometry;- quantum information.
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >